QCM sensing of bisphenol A using molecularly imprinted hydrogelconducting polymer matrix

نویسندگان

  • Kazuya Matsumoto
  • Brylee David B Tiu
  • Akifumi Kawamura
  • Rigoberto C Advincula
  • Takashi Miyata
چکیده

Molecular imprinting is a well-known fabrication technique for designing artificial receptors and molecular sensors. The technique resembles a lock and key mechanism and utilizes shape-complementary cavities within polymeric materials as molecular recognition sites for various relevant molecules. In this study, we prepared molecularly imprinted polypeptide gel layers based on cyclodextrin-modified poly(L-lysine) (CD-PLL) on quartz crystal microbalance (QCM) sensor chips and investigated their molecular recognition behaviors for bisphenol A (BPA) using the QCM technique. With BPA as the template and CD as its ligand, the BPA-imprinted CD-PLL gel layers were prepared on electropolymerized polyterthiophene films, which were formed using electrochemical QCM (EQCM). The BPA-imprinted CD-PLL gel layer chip exhibited a much greater QCM response than the non-imprinted gel layer chip in an aqueous BPA solution. The greater response of the BPA-imprinted CD-PLL gel layer chip means that molecular imprinting enabled CD ligands to be arranged at optimal positions for forming molecular recognition sites. The combination of in situ electropolymerization using EQCM and molecular imprinting provides useful methods for fabricating highly selective and sensitive sensor devices for monitoring minute amounts of BPA in water. Polymer Journal (2016) 48, 525–532; doi:10.1038/pj.2016.23; published online 17 February 2016

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.

Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quar...

متن کامل

Separation of ‎STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method

Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically.  ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...

متن کامل

Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM

Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile o...

متن کامل

Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin

A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...

متن کامل

Molecularly Imprinted Polymer for the Molecular Recognition of Endocrine Disruptor Bisphenol-a

Bisphenol-A (BPA) is a component of a coating material in can packaging and is known to leach out to the canned food. It is a known endocrine disruptor, carcinogen and mutagen hence detection and control of BPA should be a concern to protect the consumers. This study aims to develop a molecularly imprinted polymer (MIP) for the molecular recognition of BPA. This paper presents the synthesis and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016